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ABSTRACT

A perfect-model Monte-Carlo experiment was conducted to explore the characteristics of analy-

sis error in a quasi-geostrophic model. An ensemble of cycled analyses were created, with each

member of the ensemble receiving different observations and starting from different forecast

states. Observations were created by adding random error (consistent with observational error

statistics) to vertical profiles extracted from truth run data. Assimilation of new observations

was performed every 12 h using a 3-dimensional variational analysis scheme. Three observa-

tion densities were examined, a low-density network (1 observation � every 202 grid points), a

moderate-density network (1 observation � every 102 grid points), and a high-density network

(� every 52 grid points). We diagnose error characteristics primarily from a subset of 16 analy-

sis times taken every 10 days from a long time series, with the first sample taken after a 50-day

spinup. Our goal is to understand the spatial, temporal, and some dynamical characteristics of

analysis errors.

Results suggest a nonlinear relationship between observational data density and analysis error;

there was much more error reduction from the low- to moderate-density networks than from

moderate to high density. Errors in the analysis reflected both structured errors created by the

chaotic dynamics as well as random observational errors. The correction of the background to-

ward the observations reduced the error but also randomized the prior dynamical structure of the

errors, though there was a dependence of error structure on observational data density. Gener-

ally, the more observations, the more homogeneous the errors were in time and space and the

less the analysis errors projected onto the leading backward Lyapunov vectors. Analyses pro-

vided more information at higher wavenumbers errors as data density increased. Errors were

largest in the upper troposphere and smallest in the mid- to lower troposphere. Relatively small

ensembles were effective in capturing a large percentage of the analysis-error variance, though

more members were needed to capture a specified fraction of the variance as observation density
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increased.
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1. INTRODUCTION

The purpose of this paper is to understand better some of the characteristics of analysis er-

rors for a three-dimensional variational (3D-Var) analysis system. We seek to understand the

general characteristics of analysis errors, such as how they depend on observational density and

their spatial and temporal variability. We also seek a quantitative understanding of how much

the analysis error statistics reflect the dynamically structured errors contributed from the back-

ground state and how much they reflect the random errors from the observations and their as-

similation. Companion papers Snyder et al. (2001) and Snyder and Hamill (2001) will explore

the dynamical mechanisms for error growth during the forecast and will demonstrate how these

forecast error statistics can be strongly anisotropic, inhomogeneous, and non-stationary. Our fo-

cus here is on how these dynamically structured forecast errors are modified during the analysis

process.

These issues are germane for making progress in both data assimilation and probabilistic

weather prediction. For example, in data assimilation, many new ensemble-based data assim-

ilation approaches have been proposed (e.g., Evensen 1994; Evensen and van Leeuwen 1996;

Houtekamer and Mitchell 1998, 2001; Burgers et al. 1998, Mitchell and Houtekamer 1999, 2001,

Lermusiaux and Robinson 1999, van Leeuwen 1999, Anderson and Anderson 1999, Hamill and

Snyder 2000, Heemink et al. 2000, Hansen and Smith 2001, Keppenne 2000, Anderson 2001,

Hamill et al. 2001, Whitaker and Hamill 2001, and Pham 2001). All of these techniques assume

that background-forecast errors (and by extension, the analysis errors that gave rise to them) can

be accurately modeled in a severely reduced-dimensional subspace. Though some research has

touched on the issue (e.g., Tippett et al. 2001), the validity of low-dimensional approximations

to error covariance statistics in complex models has not been rigorously explored, nor is it gen-

erally understood why low-dimensional representations may be valid.

For similar reasons, these issues are also relevant to ensemble forecasting and probabilistic

prediction. Ensemble forecast methods use a sample of weather forecasts to estimate the proba-

bility of subsequent forecast states (Leith 1974). Whether initial conditions are generated from
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random samples or under dynamical constraints, there is general agreement that they should be

sampled from the probability distribution of possible analysis states (e.g., Ehrendorfer and Trib-

bia 1997). Presuming the forecast model faithfully represents the atmosphere’s dynamics, an

ensemble of forecasts from these initial conditions should provide a reasonable sample of fu-

ture forecast states. The ensemble can then be used to make probabilistic forecasts. Though the

analysis-error distribution is the one that should be sampled, until recently the characteristics of

this distribution had not been explored very thoroughly or estimated very well (however, note

again, that new ensemble-based data assimilation methods offer the hope of sampling this distri-

bution more accurately).

The characteristics of analysis errors may be important for determining the preferred method

for generating initial conditions for ensemble forecasts. It has often been presumed that Monte-

Carlo methods which randomly sampled the analysis probability distribution would not be par-

ticularly useful, owing to the huge dimensionality of the state space (and presumably the huge

effective dimensionality of the analysis distribution). Since large ensembles are not computa-

tionally feasible, it was presumed that smaller ensembles with random perturbations were likely

to be inefficient at modeling the error evolution during the forecast (e.g., Mureau et al. 1993,

Toth and Kalnay 1993, Ehrendorfer and Tribbia 1997). Hence, many have suggested that initial

conditions should project upon the dynamically growing features contained within the subspace

of analysis errors. Accordingly, operational medium-range ensemble forecasts in the U.S. and

Europe have taken the approach of specially selecting initial conditions where error growth has

been large in the past (e.g., Toth and Kalnay 1993, 1997) or is expected to be large in the future

(e.g., Molteni et al. 1995), respectively. In fact, in the methodologies currently used in the U.S.

and Europe, generating samples with growing error structures is considered more important than

designing samples that closely match analysis-error statistics (though see Barkmeijer et al. 1998,

1999).

However, if the analysis-error distribution is itself relatively low in dimension compared

with the dimension of the state space, a small ensemble randomly sampled from this distribution
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may be able to efficiently estimate future probabilities. Experimental comparisons of Monte-

Carlo and non-random methods for generating initial conditions suggests that appropriately de-

signed Monte-Carlo methods can be competive or even superior (e.g., Anderson 1996, Hamill

et al. 2000) to approaches that consider error-growth dynamics but not analysis-error statistics.

However, neither of these studies systematically documented the characteristics of analysis er-

rors. Evidence in the companion paper (Snyder et al 2001) suggests that the forecast dynamics

quickly organize errors so that they project significantly on a reduced-dimension subspace. Will

the organized errors substantially “survive” the analysis process? Assimilating observations with

random errors and reducing the errors preferentially in the growing directions may substantially

whiten the errors, i.e., make the analysis-error distribution higher-dimensional. The extent of

this effect has not been thoroughly explored.

Our approach here will be to explore the characteristics of analysis errors in an idealized

sytem, a system where large ensembles and a long period of data assimilations are possible and

where the model true state is known. Because of its simplicity and widespread use, we have

chosen to use a 3D-Var analysis system (e.g., Parrish and Derber 1992; hereafter “PD92,” Lorenc

et al. 2001, Ingleby 2001). We have also chosen to use a quasigeostrophic channel model. The

QG model, of course, has balanced dynamics and in this respect is thus an imperfect analogue to

the dynamics of primitive-equation models. However, this model has a large number of degrees

of freedom, and this model has many of the salient characteristics of weather prediction models

(Snyder et al. 2001). We also acknowledge that the perfect-model assumption is a limitation of

this study, since in operational weather forecasting, the model errors contribute significantly to

overall forecast errors and may affect the amount of randomization in the analysis. However, its

use does permit us to understand more thoroughly the connections of analysis and background

error with the forecast dynamics and the data assimilation methodology, uncomplicated by other

error sources.

In order to generate robust statistics of the errors and to examine their instantaneous struc-

ture, we will run an ensemble of assimilation cycles. Unique observations will be assimilated by
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each member. These observations are generated by adding different random errors to the true

observations, extracted from the true model state. This is roughly analogous to the perturbed

observation approach (Houtekamer and Derome 1995, Houtekamer et al. 1996, Hamill et al.

2000), though here we have an ensemble where each member is receiving a realistic observa-

tion (noise added to the perfect observation), not a degraded, perturbed observation (noise added

to an imperfect observation). Ensembles from either approach will generate very similar covari-

ance statistics; the advantage of the former over the latter is that we have independent realiza-

tions of realistic analyses rather than degraded analyses from the use of perturbed observations.

With an ensemble time series of analyses and short-range forecasts, we can answer some inter-

esting questions about the characteristics of analysis errors. These include the magnitude of the

error and how it changes with observational density, the spatial and temporal variability of er-

rors, the error correlation structures, and attributes relevant to ensemble forecasting, such as the

amount of variance explained as a function of ensemble size.

Section 2 will outline the experimental design in further detail; section 3 provides a descrip-

tion of the analysis system, and section 4 discusses the results. Section 5 concludes.

2. EXPERIMENTAL DESIGN

Our experiments begin with the assumption of a perfect model. Thus, a long reference inte-

gration of a quasi-geostrophic (QG) channel model provided the true state; the assimilation ex-

periments then used that same model together with imperfect simulated observations of the true

state.

The quasi-geostrophic model used here was used in Hamill et al. (2000) and Hamill and

Snyder (2000, 2001), and is documented extensively in Snyder et al. (2001). It is a mid-latitude,

beta-plane, grid-point channel model that is periodic in x (east-west), has impermeable walls

on the north-south boundaries, and rigid lids at the top and bottom. There is no terrain, nor are

there surface variations such as land and water. Pseudo-potential vorticity q is conserved except

for Ekman pumping at the surface, r4 horizontal diffusion, and forcing by relaxation to a zonal
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mean state. The domain is 16000 � 8000 � 9 km; there are 129 grid points east-west, 65 north-

south, and 8 model forecast levels, with additional staggered top and bottom levels at which po-

tential temperature � is specified, a total of 83850 degrees of freedom. Forecast parameters are

set as in Hamill et al. (2000).

For these experiments, all observations were presumed to be rawinsondes, with u- and v-

wind components and � observed at each of the 8 model levels. Observations and new analy-

ses were generated every 12 h, followed by a 12-h forecast with the QG model that generates

the background at the next analysis time. Observations were generated by adding noise to truth

run values of u, v, and � at the observation locations. The noise was generated to be random yet

consistent with observation-error covariance statistics, as in Houtekamer (1993). Actual observation-

error covariances were adapted from the rawinsonde variances given in PD92 and used the verti-

cal correlations given in Equation (3.19) from Bergman (1979). Tables 1 and 2 provide observation-

error covariances for potential temperature and winds, respectively (note that we have tested

observation-error covariances with virtually no vertical correlations of errors, as in Hollingsworth

and Lönnberg (1986) and Lönnberg and Hollingsworth (1986); though analysis errors decreased

by effectively having more independent observations, most of the rest of the results we will de-

scribe were negligibly affected).

The experiments were based on the three observational networks shown in Fig. 1: a low-

density network (observations � every 202 grid points); a moderate-density network (� every

102 grid points); and a high-density network (� every 52 grid points). Observations locations

were selected sequentially and randomly, using a one-dimensional Latin-Square algorithm (Press

et al. 1992) that enforces a minimum distance between observations. The moderate-density net-

work is a superset of the low-density network, and the high-density network a superset of the

moderate. For simplicity, observations were located at the model grid points.

We shall focus primarily on a time series of 195 days of analyses and the 12-h background

forecasts. This time period is substantially the same as the one used in the companion paper,

Snyder et al. (2001). So that samples from different analyses may be considered statistically in-
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dependent, we will focus on a subset of 16 analyses sampled every 10 days after a 50-day spin-

up. For the low- and high-density networks, ne=50 independent cycles, or “members” were gen-

erated; for the moderate-density network, ne=200 members were generated.

We will measure errors in three norms, the L2 norm, the total-energy norm, and the pseudo-

potential enstrophy norm. Given a geopotential perturbation from the true state Φ
0

, a PV pertur-

bation q
0

, and n grid points, the L2 norm is defined as

k � kL2 = g�1n�1=2

"
nX
j=1
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0

j)2

#1=2
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and the enstrophy norm is defined as

k � kenstrophy = n�1=2

 
nX
j=1

q
0

j

2
!1=2

: (3)

Here, N is the Brunt-Väisälä frequency, g is the gravitational constant, and f is the Coriolis pa-

rameter.

Hereafter, in our summaries of analysis-error statistics, the operator f�g denotes an average

over all ne members; h�i denotes an average over the subset nd = 16 cases, and � denotes a hor-

izontal average over all grid points at a particular model level.

Our intent was to generate random samples of analysis errors given a knowledge of the true

state of the atmosphere and a specific data assimilation system. To this end, independent, paral-

lel data assimilation cycles were generated using classical Monte-Carlo techniques (Press et al.

1992). Different initial conditions were used for each member of this ensemble, and a 12-h fore-

cast was made for each member to the first analysis time. Thereafter, the following procedure

was repeated for each member: (1) Generate a unique set of observations by adding noise to

truth run fields, as previously described. (2) Update this member background forecast with the

associated new set of observations using 3D-Var, described in the following section. (3) Make

a forecast to the next analysis time, whence this forecast becomes the background for the next
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analysis cycle. This procedure is illustrated in Fig. 2. This produces an ensemble time series of

analyses and short- range forecasts.

3. OBJECTIVE ANALYSIS

A 3D-Var scheme following PD92 will be used here. This scheme as applied to the QG

channel model is also described in more detail in Morss (1998; hereafter, M98), Morss et al.

(2001), and Hamill et al. (2000). Though more advanced and computationally expensive analy-

sis schemes exist, such as 4-dimensional variational data assimilation, or “4D-Var” (e.g., Thépaut

et al. 1993ab), the 3D-Var algorithm is still used operationally at many centers worldwide and is

appealing here because of its relative computational simplicity.

Let m = number of observations and n = number of forecast model variables, here 83850.

Hereafter, we generally follow the notational convention of Ide et al. (1997). Define H as the

model operator which transforms the forecast model variables to observation variables. H is

linear in this problem. Further, define xa as the n-component analysis and xb the model back-

ground state (also known as the prior, or “first guess”). Let yo � Hxb represent an m-component

vector of observation increments (the difference between the observations and the transformed

background variables at the observation locations). Let B be an estimate of the n � n forecast-

error covariance matrix and R an m �m covariance matrix of the errors in the observations and

representativeness, combined. Then, following Lorenc (1986) we can write a functional of the

form

J (x) =
1
2

h
(x � xb)TB�1(x � xb) + (yo � Hx)TR�1(yo � Hx)

i
: (4)

We seek the state x where the functional is a minimum; this is the optimal compromise state be-

tween the background and the new observations. By differentiating J with respect to x and set-

ting the result equal to zero, and then further multiplying through by B and rearranging terms we

get

(I + BHTR�1H)(xa � xb) = BHTR�1(yo � Hxb): (5)
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At each assimilation time, our implementation of 3D-Var solved (5) for the analysis increments

xa � xb using a conjugate residual descent algorithm (M98; Smolarkiewicz and Margolin 1994).

The analysis increment was then added to the background to produce the analysis, which was

used as the initial condition for the subsequent QG model forecast to the next analysis time.

Some assumptions were made to simplify the approximate background-error covariance ma-

trix B. In 3D-Var, B was assumed (a) to be fixed in time; (b) to be diagonal in horizontal spec-

tral coordinates; and (c) to have separable horizontal and vertical structures with simple vertical

correlations. Assumptions (a) and (b) follow PD92; for assumption (b), B was calculated as

B = SCST (6)

where S is the transform from spectral space to grid points, ST is the adjoint operator of S, which

transforms from grid points to spectral coefficients, and C is the n � n background-error covari-

ance matrix in the Fourier basis. For computational efficiency, off-diagonal elements of C are

set to 0 in the horizontal covariances. See M98 for more details on the parameterization of verti-

cal correlations in this implementation of 3D-Var.

To optimize the data assimilation, horizontal forecast background-error variances in spectral

space should be tuned to the (here, known) time-average background-error statistics associated

with each of the observational networks shown in Fig. 1. These background-error variances for

each network density are plotted as a function of horizontal wavenumber (in units of horizontal

waves per domain length) in Figs. 3 (a)-(c). Background-error covariances were derived through

the iterative methodology described in M98.

4. RESULTS

a. Spatial, temporal, and spectral characteristics of analysis errors

We first examine how analysis error characteristics change with the observation density.

Consider the time series of analysis errors (Fig. 4). Analysis errors were computed with respect

to the truth run solution and plotted for the L2 norm, the total energy norm, and the pseudo-

potential enstrophy norm as defined in equations (1) - (3). All norms exhibited similar qualita-
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tive behavior. In each norm, error generally decreased with increasing observational data den-

sity (see M98 for tests over a wider range of observation densities). However, note that the four-

fold increase in observational data density between the low and moderate densities had a much

greater effect than the increase from moderate to high data density. Qualitatively, this is con-

sistent with the relationship between observational data density and error described in M98 and

Morss et al. (2001). There, the authors demonstrated the existence of three regimes; (1) a regime

where the observations were so sparse that new observations had little incremental benefit; (2) a

regime where increasing the observational density provided a comparatively large benefit; and

(3) a regime where observations were so dense that additional observations were apparently pro-

viding redundant information and increasing the observation density was of little benefit. We

appear to have spanned regime 2 between the low- and moderate-density observations but are in

regime 3 between our tested moderate- and high-density networks.

As in Morss et al. (2001), temporal variations in the analysis error in Figs. 4 (a)-(c) also

tended to be larger when fewer observations were present; that is, the percent deviations of the

error of any arbitrarily selected analysis from the time-averaged analysis error was typically larger,

and periods of good or bad analyses lasted longer. The spatial variability of uncertainty across

the domain at a given time was reduced as well when assimilating more observations. Let �max
i

be the maximum standard deviation (spread) of streamfunction Φ over all grid points at model

level 4 on the ith case day of the 16 case days. Here spreads were calculated at each grid point

with respect to the mean at that grid point of the 50 members. Similarly, let �min
i be the mini-

mum spread across the domain, and �i be the horizontal average of spread over all grid points.

Table 3 shows h(�max
i ��min

i )=�ii, a non-dimensional measure of the spatial variability of anal-

ysis uncertainty. The spatial variability of analysis uncertainty across the domain decreases as

the number of observations increases.

We next examined vertical cross sections of error statistics. To do so, we selected on each

case day a point at model level 4 where the spread among the background forecasts about their

mean was large relative to nearby values. We then generated vertical cross sections aligned along
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the model level 4 streamline through the point. Using 50 members, we correlated the errors of

all points along the cross section with the originally selected point at model level 4, producing a

vertical cross section of correlations Ci for the ith case day. hCii before and after the objective

analysis is performed are shown for the moderate-density network in Figs. 5 (a)-(b). Notice the

upshear tilt to the error structures in the background, suggesting these errors were projecting on

baroclinically active structures. However, for the analysis in Fig. 5 (b), there was much less no-

table tilt in the correlation fields, showing how the analysis modifies prior dynamical structure.

Cross sections were quite similar for the low- and high-density networks (not shown).

Let ET, EK, and EP represent a state vector of total, kinetic, and potential energy errors.

Here, ET = EK + EP, and kinetic and potential energies at the jth grid point are defined by

EKj
= f�1 �

( 
@Φ

0

@x

!2

j

+

 
@Φ

0

@y

!2

j

)
; (7)

and

EPj
=

f

N2

 
@Φ

0

@z

!2

j

(8)

Figure 6 (a)-(b) shows fhETig, fhEKig, and fhEPig as a function of vertical level in the

model. Errors in energy were nearly 10 � higher at the top model level (� 270 hPa) than they

were at the third model level (� 650 hPa). The energy profiles were not much different in char-

acter between the background and analysis. This result is consistent with previous error stud-

ies (e.g., Hollingsworth and Lönnberg (1986), Rabier et al. 1998, Barkmeijer et al. 1998, 1999)

which document that background and analysis wind errors at 300 hPa are typically much larger

near the tropopause than in the low to middle troposphere. This suggests that the singular-vector

perturbations for ensemble forecasts measured in the total-energy initial norm, perturbations

that are typically largest in the low-to-mid troposphere, are generally not consistent with the

analysis-error covariances. This is perhaps better illustrated in Fig. 7, a vertical profile of the

average background and analysis enstrophy errors fhq02ig, for the moderate-density network,

here non-dimensionalized as in Snyder et al. (2001). Perturbations that are initially white in en-
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ergy will also have a uniform vertical profile of enstrophy (ibid); as shown here, the enstrophy

errors are much larger at the top and bottom lids than in the domain interior.

The horizontal spectrum of errors is also of interest. Let F (ET) represent an average Fourier

transform of the total energy at model level 4 in the zonal direction for grid rows in the center

third of the channel. Figure 8 plots fhF (ET)ig. For the low-density network, errors are saturated

beyond wavenumber 20. Coincidentally, Daley and Mayer (1986) found a similar result with

circa 1979 global analyses where no useful information was provided beyond wavenumber 20.

Note that in our experiment, there does appear to be useful information out to wavenumber 64

for the moderate- and high-density networks. Even though the observation density is not suffi-

cient to resolve these scales, the information supplied by the background, including small-scale

features organized by the large-scale dynamics, apparently survive the analysis process, a sign

that dynamical structure that is organized during the forecast tends to be preserved in the analy-

sis.

b. Organization of errors by forecast dynamics

A well-known property of chaotic dynamical systems is that the volume element defined by

almost any set of nl independent, infinitesimal perturbations converges over time to the subspace

defined by first nl (backward) Lyapunov vectors or LVs (Legras and Vautard 1996). We have

calculated the leading 20 LVs for this model, normalizing the LVs to be orthogonal in a total-

energy sense. Snyder and Hamill (2001) discuss the methodology for calculation of the Lya-

punov vectors, and Snyder et al. (2001) show that for this model, an ensemble of perturbations

constructed to be initially white in energy projects very significantly (�0.7) on the subspace of

the leading 20 Lyapunov vectors after 2 days, indicating the quick manner in which dynamics

organizes the errors. Here we seek to determine the extent to which background and analysis er-

rors project on the Lyapunov vectors. This will provide some indication of how much dynamical

structure is in the background and how much this information is modified in the analysis pro-

cess.
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Let pb and pa represent, respectively, a 20-dimensional vector of projections of background

and analysis errors onto the leading 20 LVs, for a given time and ensemble member. Figure 9

shows fhpbig and fhpaig for each of the three networks. Notice that the analysis process re-

duces the average projection, yet a substantial projection remains after the analysis. Compar-

ing the projections for the different networks, the projections of background error were rather

similar for the low- and moderate-density network, but are smaller for the high density network.

Normally, one might expect that the fewer the observations that were assimilated, the less ran-

domization of the dynamical structure, and hence the larger the projection onto the leading LVs.

We hypothesize that this effect is being counterbalanced by the stronger nonlinearities due to

the higher errors associated with the low-density network. However, for the subsequent analy-

sis, there was less and less projection as observation density increased. Note also that there was

some positive correlation between the amount of projection and the LV number, with the more

projection onto the rapidly growing directions (associated with the lower Lyapunov vector num-

bers).

The dynamical structure in the background-forecast errors tended to be destroyed in the

assimilation process, yet those errors are on average drawn back by the forecast dynamics to-

ward the subspace spanned by the leading LVs. What are the characteristics of errors in this

subspace? Snyder and Hamill (2002) show that the potential vorticity of the leading LVs is strongly

related to krq̄k, the magnitude of the gradient of the mean potential vorticity. Given an en-

semble of initial errors, this characteristic of the LVs manifests as a tendency for the variance

of the potential vorticity errors to correlate spatially with krq̄k as the ensemble evolves (Sny-

der et al. 2002). This property emerges quickly regardless of the initial error structure. Does

this property survive in a cycled analysis system? Here, for each network, we have determinedD
Corr( �(q)); krq̄k )

E
, an average correlation of the spread of PV with its gradient at the top

and bottom lids. The correlation is the average over the 16 case days and computed using the

model grid points in the center two-thirds of the channel. The correlations are 0.56, 0.61, and

0.58 for background forecasts for the low, moderate, and high-density networks. The correspond-
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ing correlations for the analysis are 0.49, 0.47, and 0.29. Again, more dynamical structure is lost

during the analysis process when the observation density is higher, but even at the highest den-

sity, not all structure is lost. Further, one could think about the process in reverse; the analysis

serves as the initial condition for the next background forecast, so what dynamical structure is

lost during the analysis is quickly re-established.

c. Information content and relation to ensemble size

We next seek to understand how the variance characteristics of an ensemble will change

with the size of that ensemble. This has implications for ensemble-based data assimilation ap-

proaches. If adding more ensemble members provides only marginally more detail on the struc-

ture of errors, then these added members may not be worth the extra computation.

To begin to understand the variance characteristics, let us transform a state vector x with an

operator T that converts it into a vector e of nondimensional winds and temperatures, e = Tx,

such that the standard dot product is an energy norm. We wish to determine the eigenvalues and

empirical orthogonal functions (EOFs) of the covariance matrix estimated from the ensemble

in a total energy norm: P̂f
e = 1

ne�1EET, where E = (e
0

1; : : : ; e
0

ne
) and e

0

i = ei � feg, that is,

the ith member’s deviation from the ensemble mean. These calculations were accomplished by

performing a singular value decomposition of E. The resulting singular values and vectors can

readily be shown to correspond to the square root of the eigenvalues and to the EOFs of P̂f
e , re-

spectively. With the vector of sorted eigenvalues � of P̂f
e , we determined the expected percent

of the total variance in a ne-member ensemble accounted for by the first r EOFs of P̂f
e , that is,

Λr =
Pr

i=1 �i=
Pne

i=1 �i. Figure 10 (a)-(b) shows hΛri as a function of r for the three observa-

tional densities and for both the analysis and background. Error bars represent the minimum and

maximum from the 16-day subsample. Note that the initial steepness of the eigenvalue spectrum

decreased with increasing observational data density. Also note that the analysis curves in Fig.

10(b) were slightly flatter than the background curves in Fig. 10(a).

We expect that the spectrum flattening can be explained by two effects. First, observations

have random errors. To the extent that the structure of background-error covariances permit anal-
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ysis increments to be introduced in directions off the attractor, the noise of the observations can

introduce perturbations in new directions orthogonal to that organized by the forecast dynamics.

The more observations, the greater this effect. However, even if the background-error covari-

ances are correctly modeled so they are much larger in magnitude in the directions of the lead-

ing Lyapunov vectors, the analysis process can flatten the spectrum. In this case, the analysis

corrections will be making larger corrections in these growing directions, and the error variance

will be concomitantly reduced, flattening the spectrum. The prior effect is undesirable, increas-

ing analysis errors, while the latter effect is desirable, decreasing the error. It is difficult to deter-

mine how much of the spectrum flattening is caused by each effect.

The curves in Fig. 10 provide some indication of the relative value of additional ensem-

ble members in specifying the variance but do not provide quantitative information on the size

of the ensemble needed to account for a specified fraction of the variance. Here, examine the

steepness of the covariance spectrum in a slightly different manner. We first constructed covari-

ance matrices for ensembles of various sizes from 5 to 200 members. Figure 11 (a) show time-

averaged eigenvalue spectra of h�i of P̂f
e for a 200-member ensemble. The curves were pro-

duced for the moderate density network in Fig. 1(b). The eigenvalue spectra are initially quite

steep. Now, given an ne-member ensemble, how many of the leading EOFs are necessary to ac-

count for an expected percentage of the variance, and how does this number of EOFs change as

ne changes? Figures 11 (b)-(c) show the average number of EOFs it takes to account for 25, 50,

75, and 90 percent of the total variance for various sized ensembles. For example, Fig. 11 (b)

suggests that for a 100-member ensemble, the leading 50 EOFs will account for 90 percent of

the background variance, but approximately 81 EOFs are needed to account for the same per-

centage in the 200-member ensemble. Figure 11 (c) shows that the number of members needed

is greater for the analysis compared to the background, again suggesting the objective analy-

sis tends to randomize the prior, low-dimensional structure of background errors. The curves

appears almost flat at 25 percent variance by 200 members, suggesting that an ensemble more
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quickly determines accurate leading EOFs than smaller EOFs, a convergence property typical in

EOF analysis (e.g., Preisendorfer 1988, Wilks 1995).

Along similar lines, another interesting question is whether two ensembles of background

forecasts of the same size will span the same dynamically relevant subspace. If errors in the

forecasts project primarily in a low-dimensional subspace, then two random ensembles ought

to span similar subspaces. To determine the extent of this similarity, the 200-member ensem-

ble generated for the medium-density network was split into two groups of 100 members. For

each of the 16 case days, the leading eigenvalues and EOFs the covariance matrix for each group

were determined. Figure 12 shows hpbi, the 16 case-day average projection of sorted eigenvec-

tors from ensemble members 1-100 of a 200-member ensemble onto the subspace spanned by

members 101-200. This is very similar to the subspace similarity index proposed by Buizza

(1994). The leading EOF from one 100-member group projects about 95 percent onto the sub-

space of the other 100-member group, with lesser projection for subsequent eigenvectors. Note

that even the trailing EOFs still have significant projection into a subspace spanned by an inde-

pendent sample.

5. CONCLUSIONS

We have conducted a set of experiments with a quasi-geostrophic channel model and a 3D-

Var assimilation system to examine some statistical and dynamical characteristics of analysis er-

rors. The simulations were carried out by conducting a long time series of parallel data assimila-

tions, where different, equally likely observations were assimilated by different members. Three

networks of observations were tested, low-, moderate-, and high-density networks.

Results reinforce previous findings of a nonlinear relationship between observational data

density and analysis error; there was much more error reduction from low density to moderate

than from moderate to high. Generally, the more observations, the more homogeneous the errors

were in time and space. From low-to moderate, the primary energy-containing larger scales of

motion changed from being poorly analyzed to being much better analyzed. From moderate to
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high, the improvement was roughly similar across all scales of motion. Similarly, the wavenum-

ber at which the noise (the power of the errors) exceeded the signal (the power in the true state)

increased with increasing data density; higher wavenumbers were more effectively analyzed

with increasing data density. As noted in other studies, errors were also much larger in the upper

troposphere than in the middle troposphere. Vertical profiles of the enstrophy error showed that

the errors were primarily at the model top and bottom lids, with little potential vorticity on the

interior. Taken together, these results suggest that unless observation density is uniformly high,

background-error statistics should not be expected to be either stationary or isotropic. These re-

sults also suggests that background-error covariances differ from those that would be implied by

a total-energy norm, suggesting that total-energy singular vector perturbations for ensemble fore-

casts would be substantially different in structure from analysis-error covariance singular vec-

tors.

Errors in the analysis showed characteristics of both the structured errors created by the

chaotic dynamics as well as random observational errors. The correction of the background to-

ward the observations reduced the error but also randomized the prior dynamical structure of

the errors. We showed here that the variance of the potential vorticity analysis at grid point was

strongly related to the magnitude of the potential vorticity gradient at that location. This charac-

teristics was inherited from the forecast dynamics and persists in the analysis despite the effects

of randomization.

The dynamical structure of errors depended on the observational data density; the higher

the density of observations, the less the projection onto the leading backward Lyapunov vectors,

and the more ensemble members were needed to capture a given percentage of the total analysis

variance. However, even at the highest observational density, the analysis errors retained consid-

erable dynamical structure.

One perhaps surprising result was how few ensemble members were needed to capture a

large percentage of the overall analysis-error covariance structure. Many authors have previ-

ously suggested that Monte-Carlo methodologies such as the one employed here are not particu-
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larly useful because an extraordinarily large number of members must be employed to span the

interesting dynamics. Though a precise count of ensemble members would certainly be model-

and data assimilation specific, these results suggest that Monte-Carlo methodologies are viable;

here, a 100-member ensemble was able to span most of the important dynamics in a model with

O(105) degrees of freedom. This conclusion is of course supported by the growing body of evi-

dence about the efficacy of Monte-Carlo methodologies for ensemble-based data assimilation, as

discussed in the introduction.

How much can these results be generalized across different models, different analysis sys-

tems, and under different assumptions (e.g., with model errors)? Though model errors may con-

tribute to less dynamically structured error, we believe most of the conclusions are robust. Con-

clusions about the reduced dimensionality of analysis error may differ significantly with the model

and analysis scheme. The larger the model state dimension and the more scales of motion re-

solved, the higher the expected dimensionality of both forecast and analysis error. On the other

hand, with a better data assimilation system, such as one using flow-dependent background-

error covariances, the increased use of dynamically structured error covariances should reduce

the amount of randomization in the analysis by lessening off-attractor analysis increments. This

may reduce the effective dimensionality of analysis errors.

To date, only the work of Barkmeijer (1998, 1999) has explored how to generate an ensem-

ble of initial conditions that grow rapidly yet are consistent with (time-averaged) analysis-error

statistics. These “Hessian” singular vectors were shown to be somewhat less useful for making

probabilistic forecasts than their operational “total-energy” singular vectors, perhaps because the

analysis-error statistics were not flow dependent. The results presented here and in the compan-

ion papers, as well as many results from ensemble data assimilation studies strongly suggest that

analysis error statistics are flow dependent. Though theory indicates that ensemble initial con-

ditions should be consistent with the analysis-error statistics, perhaps the generation of pertur-

bations that are consistent with these time-averaged statistics can be quite inconsistent with the

instantaneous analysis-error statistics. We hope to explore this in our future research.

20



6. ACKNOWLEDGMENTS

This research was supported by the NCAR USWRP Science Program. The bulk of the re-

search was carried out while the lead author was in NCAR’s Advanced Studies Program. The

lead author appreciates the support of the NOAA-CIRES Climate Diagnostics Center in finish-

ing this work.

21



REFERENCES

Anderson, J. L., 1996: Selection of initial conditions for ensemble forecasts in a simple perfect-

model framework. J. Atmos. Sci., 53, 22-36.

, and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering

problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.

, 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., in

press. Available from jla@gfdl.gov.

Barkmeijer, J., M van Gijzen, and F. Bouttier, 1998: Singular vectors and estimates of the analy-

sis error covariance metric. Quart. J. Roy. Meteor. Soc., 124, 1695-1713.

, R. Buizza, and T. N. Palmer, 1999: 3D-Var Hessian singular vectors and their potential

use in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2333-

2351.

Bergman, K. H., 1979: Multivariate analysis of temperatures and winds using optimum interpo-

lation. Mon. Wea. Rev., 107, 1423-1444.

Buizza, R., 1994: Sensitivity of optimal unstable structures. Quart. J. Roy. Meteor. Soc., 120,

429-451.

Bouttier, F., 1994: A dynamical estimation of forecast error covariances in an assimilation sys-

tem. Mon. Wea. Rev., 122, 2376-2390.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman

filter. Mon. Wea. Rev., 126, 1719-1724.

Daley, R., and T. Mayer, 1986: Estimates of global analysis error from the global weather exper-

iment observational network. Mon. Wea. Rev., 114, 1642-1653.

Ehrendorfer, M., and J. J. Tribbia, 1997: Optimal prediction of forecast error covariances through

singular vectors. J. Atmos. Sci., 54, 286-313.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using

Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10143-10162.

22



, and P. J. van Leeuwen, 1996: Assimilation of Geosat altimeter data for the Agulhas

current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev.,

124, 85-96.

Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A comparison of probabilistic forecasts from

bred, singular vector, and perturbed observation ensemble forecasts. Mon. Wea. Rev., 128,

1835-1851.

, and , 2000. A hybrid ensemble Kalman filter - 3D variational analysis scheme.

Mon. Wea. Rev., 128, 2905-2919.

, and , 2001. Using improved background-error covariance estimates from an

ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., in press.

, J. S. Whitaker, and , 2001: Distance-dependent filtering of background-error

covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.

Hansen, J. A., and L. A. Smith, 2001: Probabilistic noise reduction. Tellus, 53A, 585-598.

Heemink, A. W., M. Verlaan, and A. J. Segers, 2001: Variance-reduced ensemble Kalman filter-

ing. Mon. Wea. Rev., 129, 1718-1728.
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FIGURE CAPTIONS

Figure 1. Network of simulated rawinsondes used in this paper. (a) low data-density network

(� 1 obs every 202 grid points); (b) moderate data-density network (� 1 obs every 102 grid

points); (c) high data-density network (� 1 obs every 52 grid points).

Figure 2. Illustration of method by which independent, parallel analyses are created. Different

members are initialized with different background forecasts, and different sets of observa-

tions are assimilated into different members. Observations are created by adding random

error to vertical profiles taken from the true model state; random errors are consistent with

observation-error covariances. Member analyses are then used as initial conditions for a

forecast to the next data assimilation time. The process is then repeated.

Figure 3. Nondimensionalized background-error variances as a function of horizontal wavenum-

ber for pseudo-potential vorticity at model level 4. (a) low data-density network; (b) moder-

ate data-density network; (c) high data-density network.

Figure 4. Time series of analysis errors. Each dot represents the error of one member of a 50-

member ensemble of analyses, valid at the specified time. (a) Error in the L2 norm; (b) error

in the total-energy norm;(c) error in the pseudo-potential enstrophy norm.

Figure 5. Composite cross section of correlations of member deviations from the ensemble mean,

with the cross section taken along a streamline through a local maxima of �(�) at model

level 4. Dashed contours at 0.90, 0.95, and 0.99 correlation. (a) Background, moderate den-

sity network; (b) Analysis.

Figure 6. Vertical profiles of total, kinetic, and potential energies of analysis and background

errors, derived from an average over all case days and ensemble members. (a) Error in the

background; (b) error in the analysis.

Figure 7. Vertical profiles of enstrophy error for moderate-density network, averaged over the

domain and over all case days, for the analysis and the background.
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Figure 8. Total energy power spectra for the truth run and for analysis errors, averaged over

east-west cross-sections in the center 1/3 of the channel, over case days, and over ensemble

members.

Figure 9. (a) Time and ensemble average projection of errors onto the leading 20 Lyapunov vec-

tors, low density network; (b) moderate density network; (c) high-density network.

Figure 10. Sum of leading eigenvalues of forecast/analysis covariance matrix divided by the

Trace of the matrix (=total sum of all eigenvalues). Lines represent average over all case

days, and error bars indicate the smallest and largest from the 16 case day sample. (a) Back-

ground; (b) analysis.

Figure 11. (a) Time-average eigenvalue spectra of covariance matrix developed from a 200-

member ensemble in an energy norm using the moderate-density network. (b) Number of

EOFs it takes to account for prespecified percentage of background variance as a function of

ensemble size. (c) As in (b), but for analysis variance.

Figure 12. Time-averaged projection of sorted eigenvectors from ensemble members 1-100 back-

ground forecasts of a 200-member ensemble onto the subspace spanned by member back-

ground forecasts 101-200. Solid line indicates average over 16 case days, dashed lines indi-

cate minimum and maximum over 16 case days.
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Figure 1. Network of simulated rawinsondes used in this paper. (a) low data-density network

(� 1 obs every 202 grid points); (b) moderate data-density network (� 1 obs every 102 grid

points); (c) high data-density network (� 1 obs every 52 grid points).
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Figure 2. Illustration of method by which independent, parallel analyses are created. Different

members are initialized with different background forecasts, and different sets of observa-

tions are assimilated into different members. Observations are created by adding random

error to vertical profiles taken from the true model state; random errors are consistent with

observation-error covariances. Member analyses are then used as initial conditions for a

forecast to the next data assimilation time. The process is then repeated.
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Figure 3. Nondimensionalized background-error variances as a function of horizontal wavenum-

ber for pseudo-potential vorticity at model level 4. (a) low data-density network; (b) moder-

ate data-density network; (c) high data-density network.
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Figure 4. Time series of analysis errors. Each dot represents the error of one member of a 50-

member ensemble of analyses, valid at the specified time. (a) Error in the L2 norm; (b) error

in the total-energy norm;(c) error in the pseudo-potential enstrophy norm.
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Figure 5. Composite cross section of correlations of member deviations from the ensemble mean,

with the cross section taken along a streamline through a local maxima of �(�) at model

level 4. Dashed contours at 0.90, 0.95, and 0.99 correlation. (a) Background, moderate den-

sity network; (b) Analysis.
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Figure 6. Vertical profiles of total, kinetic, and potential energies of analysis and background

errors, derived from an average over all case days and ensemble members. (a) Error in the

background; (b) error in the analysis.
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Figure 7. Vertical profiles of enstrophy error for moderate-density network, averaged over the

domain and over all case days, for the analysis and the background.
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Figure 8. Total energy power spectra for the truth run and for analysis errors, averaged over

east-west cross-sections in the center 1/3 of the channel, over case days, and over ensemble

members.
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Figure 9. (a) Time and ensemble average projection of errors onto the leading 20 Lyapunov vec-

tors, low density network; (b) moderate density network; (c) high-density network.

38



Figure 10. Sum of leading eigenvalues of forecast/analysis covariance matrix divided by the

Trace of the matrix (=total sum of all eigenvalues). Lines represent average over all case

days, and error bars indicate the smallest and largest from the 16 case day sample. (a) Back-

ground; (b) analysis.
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Figure 11. (a) Time-average eigenvalue spectra of covariance matrix developed from a 200-

member ensemble in an energy norm using the moderate-density network. (b) Number of

EOFs it takes to account for prespecified percentage of background variance as a function of

ensemble size. (c) As in (b), but for analysis variance.
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Figure 12. Time-averaged projection of sorted eigenvectors from ensemble members 1-100 back-

ground forecasts of a 200-member ensemble onto the subspace spanned by member back-

ground forecasts 101-200. Solid line indicates average over 16 case days, dashed lines indi-

cate minimum and maximum over 16 case days.
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Table 1. Temperature observational error covariances (K2).

Level 1 2 3 4 5 6 7 8

1 2.82 1.97 1.15 0.72 0.52 0.42 0.35 0.29

2 1.97 2.06 1.52 0.98 0.67 0.52 0.41 0.33

3 1.15 1.52 1.69 1.38 0.97 0.71 0.53 0.41

4 0.72 0.98 1.38 1.69 1.51 1.13 0.81 0.59

5 0.52 0.67 0.97 1.51 2.01 1.92 1.41 0.98

6 0.42 0.52 0.71 1.13 1.92 2.74 2.56 1.83

7 0.35 0.41 0.53 0.81 1.41 2.56 3.59 3.24

8 0.29 0.33 0.41 0.59 0.98 1.83 3.24 4.39
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Table 2. Wind observational error covariances (m2s�2).

Level 1 2 3 4 5 6 7 8

1 2.70 3.04 2.56 1.88 1.40 1.07 0.85 0.65

2 3.04 4.53 4.61 3.59 2.63 1.94 1.48 1.10

3 2.56 4.61 6.21 5.84 4.52 3.29 2.42 1.74

4 1.88 3.59 5.84 7.27 6.80 5.23 3.80 2.63

5 1.40 2.63 4.52 6.80 8.42 7.83 6.00 4.10

6 1.07 1.94 3.29 5.23 7.83 9.64 8.93 6.44

7 0.85 1.48 2.42 3.80 6.00 8.93 10.95 9.56

8 0.65 1.10 1.74 2.63 4.10 6.44 9.56 11.03
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Table 3. (�max
d � �min

d )=�d averaged over the nd case days, as a function of data density and

analysis or background.

Background Analysis

Low Density 1.84 1.59

Moderate Density 1.29 1.13

High Density 1.02 0.67
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